Module Book

Master Program

Sustainable Energy Systems
Table of Contents

Table of Contents ... 2
Structure of the Study Program .. 4
Mandatory Courses .. 5
Module M-1: Design of Sustainable Products & Services (DSPS) 6
Module M-2: Energy Economics and Technologies 7
Modul M-3: Power System Operation and Stability 8
Modul M-4: Planning and Operation of Distributed Energy Sources 9
Modul M-5: Principles of Sustainability 10
Modul M-6: Smart Grids ... 11
Modul M-7: Power System Economics ... 12
Elective Classes – Catalogue Energy Systems 13
Modul 2-35: Selected Chapters in High Voltage Technology 14
Modul 2-36: Automotive Systems .. 15
Modul 3-28: Machine Learning in Robotics 16
Modul 2-40 Distributed and Networked Control 17
Modul 2-47: Practical Distributed Optimization in JULIA 19
Modul 2-48: Optimal Power Flow Problems 21
Modul 3-33: Electric Drive Systems .. 23
Modul 3-41: Machine Learning and optimal Control 26
Elective Classes ... 28
Modul 2-14: 3D Computer Vision .. 29
Modul 2-16: Scheduling Problems and Solutions 30
Modul 2-19: Local Networks – Communication and Control 31
Modul 3-20: Mobile Roboter .. 32
Modul 2-34: Remote Sensing .. 33
Modul 2-42: Hardware Software Codesign 34
Module 2-49: Mobile Radio Networks 1: Fundamentals and Design Aspects .. 35
Module 2-50 Mobile Radio Networks 2: Advanced Network Concepts .. 36
Modul 2-51: Embedded Autonomy .. 37
Modul 3-35: Online Problems .. 39
Modul 2-25: Modeling and Control of Robotic Manipulators 40
Modul 3-43: Automated Driving ... 41
Modul 3-45: Mobile and Pervasive Computing 42
3rd Semester ... 44
Industrial Internship .. 45
Lab Course ... 46
LAB 1: Field theoretical simulation .. 47
LAB 2: Simulative performance evaluation of communication networks .. 48
LAB 3: Simulation and control of robot systems 49
LAB 4: Programming Reconfigurable Hardware 50
LAB 5: Control system operation for electrical power grids 51
LAB 6: High Performance Computing in Python 52
Seminar Scientific Work ... 53
Master Thesis ... 54
Modul 4-1: Master Thesis .. 55
Structure of the Study Program

<table>
<thead>
<tr>
<th>1st Semester</th>
<th>2nd Semester</th>
<th>3rd Semester</th>
<th>4th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of Sustainable Products & Services
3+4 SWS 6 CP</td>
<td>Principles of Sustainability
3 SWS 5 CP</td>
<td>Lab Course
180 h 6 CP</td>
<td>Master Thesis
900 h 30 CP</td>
</tr>
<tr>
<td>Energy Economics and Technologies
3 SWS 5 CP</td>
<td>Smart Grids
4 SWS 6 CP</td>
<td>Advanced Seminar
150 h 5 CP</td>
<td></td>
</tr>
<tr>
<td>Power System Operation and Stability
6 SWS 8 CP</td>
<td>Power System Economics
3 SWS 5 CP</td>
<td>Industrial Internship
420 h 14 CP</td>
<td></td>
</tr>
<tr>
<td>Planning & Operation of Distributed Energy Sources
3 SWS 5 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective Classes
25 Creditpoints in total
15 Creditpoints from the Catalogue Energy Systems

- Elective Classes
5 CP
- Elective Classes
15 CP
- Elective Classes
5 CP

<table>
<thead>
<tr>
<th>Category</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Courses</td>
<td></td>
</tr>
<tr>
<td>Elective Classes</td>
<td></td>
</tr>
<tr>
<td>Industrial Internship</td>
<td></td>
</tr>
<tr>
<td>Practical Training</td>
<td></td>
</tr>
</tbody>
</table>
Mandatory Courses

Mandatory Courses
In the 1st and 2nd semesters, a total of 40 credit points in 7 modules must be successfully completed in the compulsory area.
Module M-1: Design of Sustainable Products & Services (DSPS)

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>CP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at WS</td>
<td>1 semester</td>
<td>Xnd semester</td>
<td>6</td>
<td>75 h</td>
<td>105 h</td>
</tr>
</tbody>
</table>

Module structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Type</th>
<th>LP</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design of Sustainable Products & Serv. Lecture</td>
<td>08 0035</td>
<td>V</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Design of Sustainable Products & Serv. Exercise</td>
<td>08 0036</td>
<td>Ü</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Design of Sustainable Products & Serv. Practical Training</td>
<td>08 0037</td>
<td>P</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Course language:

English

Teaching content of elements 1 and 2

1. Design processes for products and services taking into account sustainability criteria
2. Cost accounting for production and operation of products and services
3. Calculation and Optimizing of CO2 footprints of products and services
4. Profitability evaluations (net present value calculation, investment decisions)
5. Sustainability as part of the marketing of products (incl. product life cycle, pricing)
6. Organization of companies and projects
7. Business start-up as an option for implementing sustainable product ideas

Teaching content of element 3

- Computer-based business simulation as an integrated practical course
- Creation of a business plan for a self-selected, innovative and sustainable product or service offering

Literature

Competencies

After completion of the module examination, the students understand the essential business and sustainability aspects of the realization of electrotechnical systems. They will be able to apply suitable methods to take these aspects into account, e.g. to control the sustainable as well as economic use of resources, to evaluate product realization variants and to estimate market potentials.

Exams

Module exam: Written exam (120 minutes)

Course Credits:

- In Element 2, 50% of the total points earned are through lecture hall exercises.
- The business plan (elements 2 and 3) must be successfully prepared and presented.
- Successful participation and final presentation of the business simulation in Element 3.

The coursework is a prerequisite for taking the module exam.

Forms of examination and performance

- Module Exam
- Partial achievements

Participation requirements

None

Module type and usability of the module

Mandatory module in the Master's degree program Sustainable Energy Systems.

Module Supervisor

Prof. Dr.-Ing. Christian Wietfeld

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Module M-2: Energy Economics and Technologies

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually in winter semester</td>
<td>1 Semester</td>
<td>3. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Energy Economics and Technologies Lecture</td>
<td>08 xxxx</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Energy Economics and Technologies Presentations</td>
<td>08 xxxx</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

Course language

English

Teaching content

The course focuses on the technologies and economics of energy transitions and the role of public policy in shaping such processes. The content of the course is inherently interdisciplinary, focusing on the technological, economic, social, and environmental challenges related to energy transitions. The students become familiar with the concepts and tools of energy economics and policy analysis. It covers a diverse set of technologies, policy instruments and strategies to support energy transitions and discusses their effectiveness, efficiency and equitability.

Literature

K. Blok: Introduction to Energy Analysis
D. Martinez et. al: Energy Efficiency

Competencies

After successfully completing the course, students are familiar with technologies, policy strategies and instruments driving the deployment of sustainable energy solutions. Furthermore, students are able to estimate the economic and social impacts of such policies.

Exams

Module Exam:
- oral presentations (date to be confirmed)
- Power point slides as pdf including to be sent to the instructor a week ahead of the presentation at the latest *

All dates will be published two weeks after the start of the lecture at the very latest.

Forms of examination and performance

- Module Exam
- Partial achievements

Participation requirements

None

Module type and usability of the module

Mandatory module in the Master's degree program Sustainable Energy Systems.

Module Supervisor

Prof. Stefan Palzer, PhD
Lecturer
Dr. Sibylle Braungardt

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Modul M-3: Power System Operation and Stability

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at WS</td>
<td>1 Semester</td>
<td>1. Semester</td>
<td>8</td>
<td>70 h</td>
<td>170 h</td>
</tr>
</tbody>
</table>

Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power System Operation and Stability Lecture</td>
<td>08 0146</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Power System Operation and Stability Exercise</td>
<td>08 0147</td>
<td>Ü</td>
<td>2</td>
</tr>
</tbody>
</table>

Course language: English

Teaching content of elements 1 and 2

The course is structured into two main sections:

1. **Power System Supervision, Operation and Protection**
 - 1.1. Introduction into electrical power systems and its operational tasks
 - 1.2. System architecture of power system control centers
 - 1.3. Algorithms for power system calculation, supervision and operation
 - 1.4. Substation automation and protection architecture
 - 1.5. Power system protection functions and algorithms for short circuit and fault calculation
 - 1.6. Future trends in control centres

2. **Power System Stability, Dynamics and Control**
 - 2.1. Stability in electrical power systems
 - 2.2. Dynamic power system modelling and simulation
 - 2.3. Small signal and transient rotor angle stability
 - 2.4. Frequency stability
 - 2.5. Voltage stability and voltage control
 - 2.6. Measures to improve stability

Literature

- Power System Stability and Control by Kundur
- Power System Analysis and Design by Overbye, Glover, Sarma
- Power System Operations by Conejo, Baringo

Competencies

After successful completion of the module, the students understand the architectural structure of power system supervision, control and protection systems as well as their algorithms for handling the operating conditions of electrical power grids from a security and economic perspective. The students are able to analyse the interaction of the supervision, control and protection components. Furthermore, they have knowledge about all kinds of power system stability necessary for planning and operation. They are able to choose the appropriate models for stability assessment. Based on these, the dynamic behaviour and stability can be calculated and analysed.

Exams

Module examination: oral examination (max. 40 minutes) or written examination (max. 180 minutes).

The exact examination modalities will be announced by the 2nd course at the latest.

Participation requirements

None

Module type and usability of the module

Mandatory module in the Master’s degree program Sustainable Energy Systems.

Module Supervisor

Prof. Dr.-Ing. Christian Rehtanz

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Modul M-4: Planning and Operation of Distributed Energy Sources

Turnus
Annually at WS

Duration
1 Semester

Study section
3. Semester

LP
5

Attendance rate
35 h

Self-study
115 h

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planning & Operation of Distributed Energy Sources</td>
<td>08 XXXX</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Planning & Operation of Distributed Energy Sources</td>
<td>08 XXXX</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Course language

English

3 Teaching content

Electrical energy systems are undergoing a massive transformation towards CO₂-neutral technologies for electricity generation. Large-scale power plants are increasingly being replaced by distributed energy conversion plants. This results in new requirements for the operation of distributed resp. decentral supplied electrical energy systems and grids. Within this lecture, different technologies for energy conversion are introduced. In particular, the requirements for system integration, design, grid connection and operation are examined in detail. The lecture is structured into the following topics:

1. Introduction to the implementation of distributed energy systems
2. Technologies of distributed energy conversion and storage
3. Grid connection guidelines and protection of distributed energy conversion systems in low and medium voltage grids
4. Power grid influences and control strategies of converter-based energy conversion
5. Design and evaluation of the economic efficiency of distributed energy conversion systems

Literature

4 Competencies

After successful completion of the module, the students know the process and the effects of the change from a centralised to a decentralised energy supply. They can classify the associated effects and know a selection of (technical control) measures to increase the integration capability of decentralised energy conversion plants in the electrical distribution grids. Furthermore, they are familiar with the different plant technologies for decentralised and regenerative electrical energy conversion. They know the different connection options and their protection concepts according to the common application rules. They are able to plan and operate decentralised energy conversion plants safely, taking into account the economic and technical boundary conditions.

5 Exams

Module exam: oral exam (max. 30 minutes) or written exam (max. 90 minutes)

*The exact examination modalities will be announced by the 2nd course at the latest.

6 Forms of examination and performance

- ✔ Module Exam
- □ Partial achievements

7 Participation requirements

Recommended prerequisites: Knowledge of the fundamentals of power engineering and electrical power systems.

8 Module type and usability of the module

Mandatory module in the Master's degree program Sustainable Energy Systems.

9 Module Supervisor

Prof. Dr.-Ing. Christian Rehtanz

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Rota

Anually summer term

Duration

1 Semester

Semester

2nd Semester

Credits

5

Attendance

35 h

Self-study

115 h

Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Courses</th>
<th>LSF no.</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Principles of Sustainability</td>
<td>08 XXXX</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Principles of Sustainability</td>
<td>08 XXXX</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

Language

English

Content

1. What is Sustainability?
2. Legal framework
3. Reporting und Monitoring
4. Our CO2 footprint
5. Circular Economy in the context of energy supply
6. Climate neutral energy supply and demand
7. Sustainable solutions for energy systems (2 lectures)
8. Social Responsibility
9. The Year 2040

Literature

tbd

Competencies

After the successful completion, students have the necessary solid knowledge on principles of sustainability. They can put sustainable approaches and solutions into the context of the current legal framework and develop appropriate reporting and monitoring methods. The handling of the different levels of sustainability and their necessary interaction is conveyed based on energy systems. The students can derive the impact of new technology and processes on the path of sustainability.

Examination

* Module exam: oral exam (max. 40 minutes) or written exam (max. 90 minutes) *

* Examination prerequisites: tbd

* The exact examination modalities will be announced at the latest for the 2nd event.

Type and Performance of Examination

- Module Exam

Accumulated grade

Module prerequisites

Recommended preconditions: Knowledge about principles of energy technology

Module type and usability of the module

Mandatory module in the Master's degree program Sustainable Energy Systems.

Module Supervisor

Hon.Prof. Dr.-Ing. Lars Jendernalik

Faculty in charge

Faculty of Electrical Engineering and Information Technology
<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at SS</td>
<td>1 Semester</td>
<td>2nd Semester</td>
<td>6</td>
<td>55 h</td>
<td>125 h</td>
</tr>
</tbody>
</table>

1 **Module structure**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Smart Grids Lecture</td>
<td>08 0102</td>
<td>V</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Smart Grids Practical works</td>
<td>08 0103</td>
<td>P</td>
<td>1</td>
</tr>
</tbody>
</table>

2 **Course language**

Englisch

3 **Teaching content**

This course will handle the following aspects of the changing electrical energy network:

1. Energy transition
2. New Distribution Grid Users
3. Electro-mobility.
4. Conventional Distribution Grid and their Transformation
5. State Estimation
6. Congestion Management (Voltage CM and Thermal CM)
7. Protection and control functions
8. Timeseries Based Planning
9. Grid Automation and future trends

4 **Competencies**

The students successfully finishing the course should be able to

- understand the challenges in today's and future electrical energy distribution grids
- comprehend the multiple areas of research done in the distribution grids
- develop new solution approaches for energy system problems based on their acquired knowledge through lectures and practical works

5 **Exams**

Module Exam: oral exam (max. 30 minutes) oder written exam (max. 120 minutes) *

Prerequisites: Active participation in practical works (laboratory tasks, presentations, etc.,) is also a prerequisite to participate in the examination

* The responsible lecturer will announce the mode of the examination two weeks after the start of the lecture at the very latest.

6 **Forms of examination and performance**

- Module Exam
- Partial achievements

7 **Participation requirements**

Basic knowledge in Electrical Energy Engineering

8 **Module type and usability of the module**

Mandatory module in the Master's degree program Sustainable Energy Systems.

9 **Module Supervisor**

Dr.-Ing. Ulf Häger

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Modul M-7: Power System Economics

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at SS</td>
<td>1 Semester</td>
<td>2. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power System Economics Lecture</td>
<td>08 0227</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Power System Economics Exercise</td>
<td>08 0228</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Course language

Deutsch

3 Teaching content

1. Organization of the electricity market and regulatory framework
2. Regulation in electrical power and energy systems
3. Optimization methods in the electricity industry
4. Unit Commitment
5. Grid charges and transmission rights
6. Modeling and simulation of electricity markets and grids
7. Cross-border electrical energy trading capacities
8. Network congestion management and redispatch optimisation
9. Portfolio optimization and risk management
10. Investment in generation and grid capacity

Literature

D. Kirschen: Fundamentals of Power System Economics, Wiley

4 Competencies

After successful completion, students have a sound knowledge of market mechanisms and management strategies in grid-based energy supply. They are able to discuss the technical constraints from the power grids to energy supply in economic and business contexts. They are able to apply their knowledge in power system economics to further developments in the technical, market and regulatory context. In addition to the electricity industry in general, the special focus of this lecture is on the electrical network industry.

5 Exams

Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes) *

*The exact examination modalities will be announced by the 2nd course at the latest.

6 Forms of examination and performance

- Module Exam
- □ Partial achievements

7 Participation requirements

Recommended prerequisites: Knowledge of the basics of power engineering

8 Module type and usability of the module

Mandatory module in the Master's degree program Sustainable Energy Systems.

9 Module Supervisor

Prof. Dr.-Ing. Christian Rehtanz

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Elective Classes – Catalogue Energy Systems

Elective Classes
A total of 25 credit points must be successfully acquired in the compulsory elective modules (according to the study plan for semesters 1, 2 and 3).
15 of the 25 credit points are to be selected from the Energy Systems catalogue.
10 credit points are freely selectable.
Modul 2-35: Selected Chapters in High Voltage Technology

Turnus: Annually at SS
Duration: 1 Semester
Study section: 2nd Semester
LP: 5
Attendance rate: 35 h
Self-study: 115 h

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Selected Chapters in High Voltage Technology (lecture)</td>
<td>08 0203</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Selected Chapters in High Voltage Technology (tutorial)</td>
<td>08 0204</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Course language
Deutsch

3 Teaching content
1. requirements for high-voltage equipment
2. technology, structure and design
3. insulation systems for DC
4. diagnostic methods and technology trends
5. examples and applications from practice

Literature
Kuffel: High Voltage Engineering Fundamentals,
Küchler: High Voltage Engineering - Fundamentals - Technology - Applications

4 Competencies:
Students acquire detailed knowledge of selected operating equipment of power transmission systems. They are familiar with the constructive structure and electrical design and know the technological boundaries which apply for high-voltage devices. The participants are familiar with procedures and measurement methods for quality assurance reasons and diagnostics on high-voltage devices. Examples and applications deepen the knowledge and establish the reference to the operational practice.

5 Exams
Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes) *

*The exact examination modalities will be announced by the 2nd course at the latest.

6 Forms of examination and performance
☑ Module Exam □ Partial achievements

7 Participation requirements
Recommended prerequisites: Sufficient knowledge in energy technology, as can be acquired e.g. through participation in the basic module "Field and Network-Based Modelling".

8 Module type and usability of the module

9 Module Supervisor
Prof. Dr.-Ing. Frank Jenau

Faculty in charge
Faculty of Electrical Engineering and Information Technology
Modul 2-36: Automotive Systems

Turnus: Annually at SS
Duration: 1 Semester
Study section: 2nd Semester
LP: 5
Attendance rate: 35 h
Self-study: 115 h

Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Automotive Systems (lecture)</td>
<td>08 0008</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Automotive Systems (tutorial)</td>
<td>08 0009</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

Course language
Englisch

Lehrinhalte

1. Vehicle dynamics (tires, longitudinal and lateral dynamics)
2. Actuators in the mechatronic vehicle (steering, braking, and powertrain systems)
3. (Kinematic) vehicle models
4. Sensors measuring vehicle internal quantities (acceleration, yaw rate, steering angle, steering torque, wheel speed, sensor data processing)
5. Vehicle dynamics systems (braking and driving slip control systems)
6. Modern headlight systems and light engineering

Literature:
- R. Rajamani: Vehicle Dynamics and Control (Springer)

Competencies

The students acquire a profound knowledge of vehicle dynamics systems (dynamics, sensors measuring vehicle dynamics quantities, actuators, models, simulation, control, and optimization). They are able to understand and solve tasks on vehicle dynamics systems with appropriate methods.

Exams

Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes) *

The exact examination modalities will be announced by the 2nd course at the latest.

Prüfungsformen und -leistungen

- Module Exam
- Partial achievements

Participation requirements

Recommended prerequisites: Basic knowledge of mechatronics and mechanics.

Module type and usability of the module

Module Supervisor

Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram
Faculty in charge
Faculty of Electrical Engineering and Information Technology
Modul 3-28: Machine Learning in Robotics

Turnus
- Annually at SS

Duration
- 1 Semester

Study section
- 2nd Semester

Study Points (LP)
- 5

Attendance rate
- 35 h

Self-study
- 115 h

Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Machine Learning in Robotics (lecture)</td>
<td>08 0808</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Machine Learning in Robotics (tutorial)</td>
<td>08 0809</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Course language
- Englisch

Teaching content
1. Fundamentals of Machine Learning
2. Nonlinear Regression
3. Neural Networks
4. Deep Learning
5. Reinforcement Learning

Literature:
- Richard Sutton, Andrew G. Barton, Reinforcement Learning an Introduction, 2nd edition, MIT Press, 2018
- ausgewählte Veröffentlichungen aus Zeitschriften und Konferenzen

Competencies
The students acquire a profound knowledge of theoretical concepts and practical applications of machine learning in robotics. Students are able to solve machine learning tasks for supervised and reinforcement learning with methods and algorithms within Matlab and ROS.

Exams
Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes) *

*The exact examination modalities will be announced by the 2nd course at the latest.

Prüfungsformen und -leistungen
- Module Exam
- Partial achievements

Participation requirements
- None

Module type and usability of the module

Module Supervisor
- apl. Prof. Dr. rer. nat. Frank Hoffmann

Faculty in charge
- Faculty of Electrical Engineering and Information Technology
<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at SoSe</td>
<td>1 Semester</td>
<td>2nd Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 **Module structure**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distributed and Networked Control (lecture)</td>
<td>08 0092</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Distributed and Networked Control (tutorial)</td>
<td>08 0093</td>
<td>Ü</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Distributed and Networked Control (lab course)</td>
<td>08 0094</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

2 **Course language**

Englisch

3 **Teaching content Element 1**

- Introduction to distributed control and networked systems
 - Cyber-physical systems
 - Application domains
 - Examples
- Algebraic graph theory
 - Directed graphs and their description
 - Matrix representation of graphs
 - Analysis tools for graphs
- Consensus in multi-agent control
 - Control design for consensus
 - Convergence analysis
 - Leader-follower networks
- Synchronisation
 - Modelling and interpretation of coupling structures
 - Linear and nonlinear settings
 - Kuramoto oscillators
 - Power-swing equations
- Research outlook and case studies

Teaching content Elemente 2 und 3

- Black board exercises, in class computer exercises

Literature

4 **Competencies**

The students are able to formulate and to solve problems of modelling and control of networked control systems and distributed control. The students are able to understand and to analyze the interplay of problem formulation, modelling and system-theoretic solution approaches. They know how to apply and to implement distributed and decentralized control schemes for networked linear systems. The students are able to analyze consensus phenomena and synchronization mechanisms arising in coupled systems.

5 **Exams**

*Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes) *

*The exact examination modalities will be announced by the 2nd course at the latest.

6 **Prüfungsformen und -leistungen**

- Module Exam
- Partial achievements
<table>
<thead>
<tr>
<th></th>
<th>Participation requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required prerequisites:</td>
</tr>
<tr>
<td></td>
<td>- Basics of control engineering (state space description, LQR control, Lyapunov functions)</td>
</tr>
<tr>
<td></td>
<td>- Basics of ordinary differential equations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module type and usability of the module</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module Supervisor</th>
<th>Faculty in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Timm Faulwasser</td>
<td>Faculty of Electrical Engineering and Information Technology</td>
</tr>
</tbody>
</table>
Modul 2-47: Practical Distributed Optimization in JULIA

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at SoSe</td>
<td>1 Semester</td>
<td>2nd Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Practical Distributed Optimization in julia (lecture)</td>
<td>08 0328</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Practical Distributed Optimization in julia (tutorial)</td>
<td>08 0329</td>
<td>Ü</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Course language

Englisch

3 Teaching content part 1

- concepts of distributed algorithms and multi-agent systems in the context of computer science, control and optimisation
- distributed and decentralised approaches to solving convex and non-convex optimisation problems
- implementation of the optimisation approaches in the programming language julia (flipped classroom)
- Algorithms covered include
 - Decomposition of Sequential Quadratic Programming and Interior Point methods Dual Decomposition
 - Augmented Lagrangian
 - Augmented Direction of Multipliers Methods (ADMM)
 - Augmented Lagrangian Inexact Newton (ALADIN)
- Application examples from control and automation

Teaching content part 2

- Introduction to JULIA
- Implementation of optimisation algorithms in JULIA
- Case studies for technical applications

4 Competencies

Students are able to independently solve problems of multi-agent optimisation in technical applications with the help of mathematical methods. In particular, they are able to analyse application-related problems and to transcribe them into abstract optimisation problems and solve them with the help of suitable multi-agent approaches, i.e. distributed and decentralised optimisation methods.

Students master the basics of the programming language julia and are able to solve optimisation problems in it. They have an overview of established methods for solving convex and non-convex optimisation problems using multi-agent approaches for distributed and decentralised optimisation methods.

5 Exams

Module Exam: oral exam (max. 30 minutes) *
Course achievements: project work accompanying the lecture **

*The exact examination modalities will be announced by the 2nd course at the latest.
**The course work is a prerequisite for participation in the Module Exam.

6 Forms of examination and performance

☑ Module Exam
 ☐ Partial achievements
<table>
<thead>
<tr>
<th></th>
<th>Participation requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recommended prerequisites: Prior knowledge of numerical optimisation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module type and usability of the module</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Timm Faulwasser</td>
</tr>
<tr>
<td></td>
<td>Lecturer</td>
</tr>
<tr>
<td></td>
<td>Dr.-Ing. Alexander Engelmann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Faculty in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Faculty of Electrical Engineering and Information Technology</td>
</tr>
</tbody>
</table>
Modul 2-48: Optimal Power Flow Problems

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at SoSe</td>
<td>1 Semester</td>
<td>2nd Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 Module structure
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Optimal Power Flow Problems (lecturer)</td>
<td>08 XXXX</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Optimal Power Flow Problems (tutorial)</td>
<td>08 XXXX</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Course language
 Englisch

3 Lehrinhalte
 The problem of Optimal Power Flow (OPF) in power systems occurs in various formulations and variants in power engineering. In this context, the lecture offers an introduction to different aspects of OPF problems. The following topics are covered:
 - Formulation of the OPF problem in AC
 - Convex approximations of the OPF problem
 - Stochastic formulations of the AC OPF problem
 - Dynamic formulations of the OPF problem for transmission and distribution networks considering storage dynamics
 - Distributed formulations of the OPF problem
 - Outlook on approaches for the coupling of electric grids and gas grids

 The solution will be tested practically with the help of standard software (e.g. Matpower or Pan-dapower, powermodels.jl).

 Literature

4 Competencies
 After successful participation in the module, the students have basic knowledge of formulating and solving OPF problems. In particular, they are able to recognise the different types of OPF problems, formulate them and solve them with the help of suitable software tools.

5 Exams
 Partial achievements:
 - Written exam (90 minutes) or oral exam (max. 30 minutes)
 - Project work accompanying the lecture with written report *

 * The overall grade is formed from the arithmetic mean of the partial grades. The exact examination modalities will be announced by the 2nd course at the latest.

6 Forms of examination and performance
 - Module Exam
 - Partial achievements

21
<table>
<thead>
<tr>
<th>7</th>
<th>Participation requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recommended prerequisites: Prior knowledge of the fundamentals of electrical power engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Module type and usability of the module</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Module Supervisor</th>
<th>Faculty in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Timm Faulwasser</td>
<td>Faculty of Electrical Engineering and Information Technology</td>
</tr>
</tbody>
</table>
Modul 3-33: Electric Drive Systems

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at WS</td>
<td>1 Semester</td>
<td>3rd Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1. **Module structure**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electric Drive Systems (lecture)</td>
<td>08 0132</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Electric Drive Systems (tutorial)</td>
<td>08 0133</td>
<td>Ü</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Electric Drive Systems (course lab)</td>
<td>08 0134</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

2. **Course language**

Deutsch

3. **Teaching content**

1. Structure of electric drive systems
2. Principles and modeling of electrical machines
3. Variable speed operation and position sensing methods.
4. Drive inverters and modulation techniques

Literature

Krause: Analysis of Electric Machinery and Drive Systems, IEEE-Wiley Press

4. **Competencies**

After successful completion, students will be familiar with the essential properties of the electrical machines used in electric drive systems today and with their application in traction and industry. They are able to mathematically describe and design drive control systems consisting of electrical machines and drive inverters. They successfully apply the common methods for speed control including sensorless operation.

5. **Exams**

Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes)

Course achievements: Successful completion of the lab course attempt in part 3.

The exact examination modalities will be announced by the 2nd course at the latest.

The course work is a prerequisite for participation in the Module Exam.

6. **Forms of examination and performance**

- Module Exam
- Partial achievements

7. **Participation requirements**

Recommended prerequisites: Fundamentals of electrical machines.

8. **Module type and usability of the module**

9. **Module Supervisor**

Prof. Dr.-Ing. Martin Pfost

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Modul 3-39: Nonlinear Model Predictive Control – Theory and Applications

Turnus
Annually at WS

Duration
1 Semester

Study section
3rd Semester

LP
10

Attendance rate
75 h

Self-study
225 h

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nonlinear Model Predictive Control – Theory and Applications (lecture)</td>
<td>08 0271</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Nonlinear Model Predictive Control – Theory and Applications (tutorial)</td>
<td>08 0272</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Nonlinear Model Predictive Control – Theory and Applications (lab course)</td>
<td>08 0273</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Course language
Englisch

Teaching content Elements 1
Basics of optimal control theory and numerical optimal control
- Optimality conditions for static problems
- Formulation of optimal control problems
- Gateaux derivative
- Pontryagin Maximum Principle
- Indirect and direct solution methods
- Efﬁziente derivative computation

Advanced aspects of optimal control
- Existence of optimal solutions
- Dual variables
- Singular problems
- Dissipativity and turnpike properties

Model predictive control of sampled-data systems
- Basics of MPC
- Sufﬁcient stability conditions with and without terminal constraints
- Economic cost functions
- Differences of continuous time and discrete time formulations
- Design and implementation aspects

Outlook
- Stochastic and robust MPC
- Limits of MPC

Case studies
- Energy efﬁciency in technical systems, multi-energy systems, and others

Teaching content Elements 2 und 3
- Black board and programming sessions (ca 20h at home and ca 10h in course)

Literature
Chachuat, Benoit. *Nonlinear and dynamic optimization: From theory to practice*. Lecture Notes EPFL

Competencies
The students are able to formulate and to solve problems of operation and control of technical systems on their own. The students are able to understand and to analyze the interplay of problem formulation and efﬁciency aspects of numerical solutions and to deduce problem-speciﬁc formulations. They know how to apply and to implement optimization methods to practical problems. Furthermore, the students can tackle complex problems of predictive control by means of abstraction, they are able to document their results in written form.
The students are able to design predictive controllers for nonlinear systems and to validate them by means of simulation.
<table>
<thead>
<tr>
<th>5</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Exam: oral exam (max. 40 minutes) **</td>
<td></td>
</tr>
<tr>
<td>Course achievements: Elaboration of a project (simulation and optimisation, effort approx. 50h) and documentation of the results in report form (approx. 20 pages DIN A4).*</td>
<td></td>
</tr>
</tbody>
</table>

** The exact examination modalities will be announced by the 2nd course at the latest.

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsformen und -leistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ Module Exam</td>
<td>☐ Partial achievements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Participation requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necessary requirements:</td>
<td></td>
</tr>
<tr>
<td>• Basics of control engineering (state space description, LQR control, Lyapunov functions)</td>
<td></td>
</tr>
<tr>
<td>• Basics of ordinary differential equations</td>
<td></td>
</tr>
<tr>
<td>Recommended prerequisites:</td>
<td></td>
</tr>
<tr>
<td>• Basic of optimization, Multivariate Control and Optimal Control</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Module type and usability of the module</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Module Supervisor</th>
<th>Faculty in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Timm Faulwasser</td>
<td>Faculty of Electrical Engineering and Information Technology</td>
<td></td>
</tr>
</tbody>
</table>
Module 3-41: Machine Learning and optimal Control

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at WS</td>
<td>1 Semester oder Block</td>
<td>3rd Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Machine Learning and optimal Control Vorlesung</td>
<td>08 XXXX</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Machine Learning and optimal Control Übung</td>
<td>08 XXXX</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Course language

English

3 Content

Machine Learning (ML) is one of the key technologies of the 21st century; the applications of ML in technical and information technology systems are already ubiquitous. In this context, the lecture offers a system-theoretically and control-technically motivated introduction to different aspects of Machine Learning. Based on the fundamental distinction between unsupervised, supervised and self-reinforcing learning, the following topics are covered:

- Reinforcement learning and its connection to optimal control (especially approaches of the Hamilton-Jacobi-Bellman equation and dynamic programming) and to model-predictive control.
- Formulation on discrete and continuous state spaces
- The formulation of supervised deep learning as an optimal control problem
- Data-driven approaches to model-predictive control for linear systems

The application of these ML approaches is formally analysed and practically tested with the help of standard software (e.g. Matlab or Python).

Literature

4 Competencies

After successful participation in the module, the students have basic knowledge of machine learning methods and their use in control engineering application contexts. In particular, they are able to recognise the different types of learning problems, formulate them and solve them with the help of suitable software tools.

The students are able to explain the fundamental relationships between optimal control and self-reinforcing learning.

With regard to the numerical solution, the students are familiar with basic algorithmic structures and procedures so that they can interpret and evaluate solutions from software tools. Using control engineering examples, the students have also gained an insight into the diverse application possibilities of machine learning.

5 Exams

Partial achievements:

- Written exam (90 minutes) or oral exam (max. 30 minutes) *

* The exact examination modalities will be announced by the 2nd course at the latest.

6 Forms of examination and performance

☑️ Module Exam
☐ Partial achievements
<table>
<thead>
<tr>
<th></th>
<th>Participation requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recommended prerequisites: Previous knowledge of Fundamentals of Optimal Control (LQR) or numerical optimization; state space representation and difference equations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module type and usability of the module</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module Supervisor</th>
<th>Faculty in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Timm Faulwasser</td>
<td>Faculty of Electrical Engineering and Information Technology</td>
</tr>
</tbody>
</table>
Elective Classes

A total of 25 credit points must be successfully acquired in the compulsory elective modules (according to the study plan for semesters 1, 2 and 3).
15 of the 25 credit points are to be selected from the Energy Systems catalogue.
10 credit points are freely selectable.
Modul 2-14: 3D Computer Vision

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3D Computer Vision (lecture)</td>
<td>08 0259</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3D Computer Vision (tutorial)</td>
<td>08 0260</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

Teaching Content
1. Modelling and calibration of camera systems
2. 3D reconstruction based on several camera images through bundle adjustment
3. Determination of point correspondences
4. Introduction to 3D reconstruction methods based on projective geometry
5. Methods for 3D reconstruction of surfaces based on their reflective properties
6. Practical application examples from current research

Literature
- Horn: Robot Vision
- Hartley/Zisserman: Multiple Viewpoint Geometry

Competencies
After successful completion of the module, the students master the essential basics of 3D image processing, photogrammetry and the linear and non-linear optimisation methods required for this. The students can classify tasks for systems for 3D scene reconstruction from different application areas and solve them independently with independently selected methods.

Exams
- **Module Exam**: oral exam (max. 40 minutes) or written exam (max. 180 minutes) *

* The exact examination modalities will be announced by the 2nd course at the latest.

Forms of examination and performance
- ☒ Module Exam
- ☐ Partial achievements

Participation requirements
Recommended prerequisites: Good knowledge of linear algebra as well as linear and non-linear optimisation.

Module type and usability of the module
Elective Class in the Master’s degree program Sustainable Energy Systems.

Module Supervisor
Prof. Dr. rer. nat. Christian Wöhler

Faculty
Faculty of Electrical Engineering and Information Technology
Modul 2-16: Scheduling Problems and Solutions

Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scheduling Problems and Solutions (lecture)</td>
<td>08 0385</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Scheduling Problems and Solutions (tutorial)</td>
<td>08 0386</td>
<td>Ü</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Scheduling Problems and Solutions (lab course)</td>
<td>08 0387</td>
<td>P</td>
<td>1</td>
</tr>
</tbody>
</table>

Course language
Englisch

Teaching content part 1 und 2

1. Scheduling language and classes of schedules
2. Complexity
3. Single machine environments: makespan and total weighted completion time, lateness and tardy jobs, total tardiness and a non-regular objective function, a simple bicriterial problem
4. Online problems in single machine environments
5. Parallel machine environments: makespan, total weighted completion time, lateness, and online problems
6. Flow shop, job shop, and open shop problems

Teaching content part 3: Practical approaches to solve scheduling problems including the use of Matlab and CPLEX

Literature

Competencies

After successful completion, the students can classify scheduling problems and apply suitable methods for their processing. They are able to evaluate solution methods with regard to their efficiency and to develop new solution methods for complex scheduling problems on the basis of classical methods.

Exams

Module Exam: oral exam (max. 40 minutes) *
Study achievements: Successful completion of the course lab in part 3.
The course work is a prerequisite for participation in the Module Exam.

Forms of examination and performance

- Module Exam
- Partial achievements

Participation requirements

Recommended prerequisites: Good knowledge of fundamentals of discrete mathematics and fundamentals of algorithms.

Module type and usability of the module

Elective Class in the Master’s degree program Sustainable Energy Systems.

Module Supervisor

Prof. Dr.-Ing. Uwe Schwiegelshohn
Faculty in charge

Faculty of Electrical Engineering and Information Technology
Modul 2-19: Local Networks – Communication and Control

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at SS</td>
<td>1 Semester</td>
<td>2nd Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1. Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Local Networks - Communication and Control (lecture)</td>
<td>08 0802</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Local Networks - Communication and Control (tutorial)</td>
<td>08 0803</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

2. Course language

Englisch

3. Teaching content

1. basics of networks: technical concepts and applications
2. system examples of wired networks: CAN bus, Ethernet, USB
3. system examples of wireless networks: WLAN, Bluetooth, Zigbee

Literature

Surgeon: Ethernet
Rech: Wireless LANs
Miller, Bisdikian: Bluetooth Revealed

4. Competencies

After successful completion, the students are able to evaluate the different concepts for local networks with regard to their performance, understand existing standards and build systems as well as assess current further developments of the technology.

5. Exams

Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes) *

* The exact examination modalities will be announced by the 2nd course at the latest.

6. Forms of examination and performance

☒ Module Exam ☐ Partial achievements

7. Participation requirements

None

8. Module type and usability of the module

Elective Class in the Master's degree program Sustainable Energy Systems.

9. Module Supervisor

Prof. Dr.-Ing. Rüdiger Kays

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Turnus: Annually at SoSe
Duration: 1 Semester
Study section: 2nd Semester
LP: 5
Attendance rate: 50 h
Self-study: 100 h

1 Module structure
 Nr. | Element / Course | LSF no. | Typ | SWS
 1 | Mobile Roboter (lecture) | 08 0154 | V | 2
 2 | Mobile Roboter (tutorial) | 08 0155 | Ü | 2

2 Course language
 Englisch

3 Teaching content
 1. Robot Operating System (ROS)
 2. Robotics System Toolbox Matlab
 3. Sensors, actuators and kinematics of mobile robots
 4. Homing and trajectory following
 5. Obstacle avoidance (Vector Field Histograms)
 6. Localisation
 7. Path planning (Rapidly Exploring Random Trees, Probabilistic Roadmap)
 9. Online trajectory optimization
 10. Mapping and SLAM

4 Competencies
 The students acquire a profound knowledge of fundamental concepts and practical experience on mobile robots. Students are able to solve mobile robotic tasks such as obstacle avoidance, navigation and localization in a self-dependent manner with selected methods and algorithms in ROS/Matlab.

5 Exams
 Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes) *
 Study achievements:
 • Successful completion of at least 75% of the practical exercises in ROS/Matlab for programming mobile robots.

 The course work is a prerequisite for participation in the Module Exam.

 * The exact examination modalities will be announced by the 2nd course at the latest.

6 Forms of examination and performance
 ✔ Module Exam ☐ Partial achievements

7 Participation requirements
 None

8 Module type and usability of the module
 Elective Class in the Master's degree program Sustainable Energy Systems.

9 Module Supervisor
 apl. Prof. Dr. rer. nat. Frank Hoffmann
 Faculty in charge
 Faculty of Electrical Engineering and Information Technology
Module 2-34: Remote Sensing

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at SS</td>
<td>1 Semester</td>
<td>2nd Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remote Sensing (lecture)</td>
<td>08 0243</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Remote Sensing (tutorial)</td>
<td>08 0244</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

Course language

- **English**

Lehrinhalte

1. sensor systems for taking aerial and satellite images
2. properties of aerial and satellite images in different spectral ranges
3. correction methods for atmospheric and topographic effects
4. methods for the analysis of image data in remote sensing applications
5. methods for the analysis of spectral data in remote sensing applications
6. orthorectification, georeferencing and coregistration of aerial and satellite imagery
7. classification methods for multi- and hyperspectral imagery data
8. practical application examples from current research

Literature

Competencies

After successful completion of the module, the students master the essential basics of remote sensing as well as the signal and image processing methods required for this. The students can classify tasks for remote sensing systems from different application areas and solve them independently with independently selected methods.

Exams

Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes)*

* The exact examination modalities will be announced by the 2nd course at the latest.

Participation requirements

- Recommended knowledge: Sufficient knowledge in basics of electrical engineering, signal processing, image processing

Module type and usability of the module

Elective Class in the Master’s degree program Sustainable Energy Systems.

Module Supervisor

- **Prof. Dr. rer. nat. Christian Wöhler**
- **Faculty in charge**
 - Faculty of Electrical Engineering and Information Technology
Modul 2-42: Hardware Software Codesign

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at SS</td>
<td>1 Semester</td>
<td>2nd Semester</td>
<td>10</td>
<td>70 h</td>
<td>230 h</td>
</tr>
</tbody>
</table>

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hardware Software Codesign (Lecture)</td>
<td>08 0316</td>
<td>V</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Hardware Software Codesign (Tutorial)</td>
<td>08 0317</td>
<td>Ü</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Hardware Software Codesign (Practical Exercise)</td>
<td>08 XXXX</td>
<td>P</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Course language

English

3 Teaching content

1. Design of mixed Hardware/Software solutions for embedded systems,
2. Understanding of design components
3. Understanding of system-level design paradigms,
4. HW/SW partitioning
5. Optimization methods
6. Performance analysis measures
7. Evaluation methods

Literature

4 Competencies

By attending this course, students will learn the design of complex electronic systems at high level of abstractions. This includes the optimized partitioning, scheduling and evaluation of mixed hardware and software design solutions dedicated to embedded systems. During the Tutorials the students acquire knowledge about advanced related topics in HW/SW codesign and performance analysis for safety-critical and real-time embedded systems. During the practical exercises to the lecture the students will apply the theoretical knowledge of the lecture considering real-world scenarios to allow a better accessibility to the methods explained. Starting from simple system specification the students will use tools for partitioning, optimization and performance analysis to synthesize the hardware/software system.

5 Exams

Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes)*

Study achievements:
- All students are required to successfully complete 2 out of 4 special assignments in order to be admitted to the final exam.
- All students are required to successfully complete the lab tasks.

* The exact examination modalities will be announced by the 2nd course at the latest.

6 Prüfungsformen und -leistungen

[X] Module Exam [] Partial achievements

7 Participation requirements

Recommended knowledge:
Basic knowledge of computer architectures, basic knowledge of C programming language.

8 Module type and usability of the module

Elective Class in the Master’s degree program Sustainable Energy Systems.

9 Module Supervisor

Prof. Dr.-Ing. Selma Saidi

Faculty in charge

Faculty of Electrical Engineering and Information Technology
<table>
<thead>
<tr>
<th>Rota anually SoSe</th>
<th>Duration</th>
<th>Semester</th>
<th>Credits</th>
<th>Presence</th>
<th>Self-Study Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Semester</td>
<td>2nd</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element / Course</th>
<th>LSF-No.</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mobile Radio Networks 1: Fundamentals and Design Aspects: Lecture</td>
<td>08 0104</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Mobile Radio Networks 1: Fundamentals and Design Aspects: Lab Course</td>
<td>08 0105</td>
<td>P</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Language

English

3 Content

1. Market aspects and historical development of mobile communications
2. System aspects (characteristics of propagation, subscriber mobility, resource demand and spectrum allocation, network planning, protocols)
3. TDMA- und CDMA-based cellular networks (2G GSM/GPRS/EDGE, 3G UMTS/HSPA)
4. System architecture of OFDMA-based cellular networks (4G LTE)

The discussion of theoretical content is complemented by practical demonstrations and by case studies on ongoing research and business aspects of mobile radio networks.

Literature (respective latest version)
Walke, B.: Mobile Radio Networks, Wiley

4 Competencies

After successful completion of the module, students understand the system architectures, protocols, dimensioning and operation of mobile radio networks. Students are able to evaluate the possibilities and challenges of using wireless networks in different deployment environments and fields of application, and to make a technically sound selection. In this way, they acquire the competence to attend more advanced courses or to study more advanced topics for themselves.

5 Examination

Module exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes)
Course work: successful completion of lab tasks

The exact examination modalities will be announced by the 2nd event at the latest.

6 Forms of examination and performance

- ☒ Module exam
- ☐ Part of modular exam

7 Participation requirements

None. Basic knowledge of digital communications and electromagnetic wave propagation is recommended.

8 Module type and usability of the module

Elective Class in the Master's degree program Sustainable Energy Systems.

9 Module Supervisor

Prof. Dr.-Ing. Christian Wietfeld

Faculty in charge

Faculty of Electrical Engineering and Information Technology
1. Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element / Course</th>
<th>LSF-No.</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mobile Radio Networks 2: Advanced Network Concepts: Lecture</td>
<td>XXX</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Mobile Radio Networks 2: Advanced Network Concepts: Lab Course</td>
<td>XXX</td>
<td>P</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Content

1. Local radio networks (WLAN/Wi-Fi, WPAN, Mesh, DECT)
2. Wireless Internet of Things networks (Low Power Wide Area Networks, Cellular-IoT)
3. Advanced features of 4G and 5G networks (Carrier Aggregation, Device-to-Device, Network Slicing, Beamforming, Ultra Reliable and Low Latency Communications)
4. Satellite networks, Aerial Wireless Networks
5. Future mobile network concepts for 5G-Advanced and 6G (e.g. mmWave/THz spectrum, Reflective Intelligent Surfaces, Integration of Artificial Intelligence)

The discussion of theoretical content is complemented by practical demonstrations and by case studies on ongoing research and business aspects of mobile radio networks.

4. Competencies

Upon successful completion of the module, students understand advanced and upcoming mobile radio network concepts and terminology which enables them to characterize research-related challenges of integrating the considered features, assess the feasibility, and to develop design solutions according to design goals. Students further deepen their knowledge base on specific network designs for particular fields of application, and to make a technically sound selection.

5. Examination

Module exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes)*

Course work: successful completion of lab tasks

*The exact examination modalities will be announced by the 2nd event at the latest.

6. Forms of examination and performance

- [x] Module exam

- [] Part of modular exam

7. Participation requirements

None. Basic knowledge of mobile radio networks is recommended.

8. Module type and usability of the module

Elective Class in the Master's degree program Sustainable Energy Systems.

9. Module Supervisor

Prof. Dr.-Ing. Christian Wietfeld

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Modul 2-51: Embedded Autonomy

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>anually SoSe</td>
<td>1 Semester</td>
<td>2nd Semester</td>
<td>10</td>
<td>70 h</td>
<td>230 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Module structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Embedded Autonomy (lecture)</td>
</tr>
<tr>
<td>2</td>
<td>Embedded Autonomy (tutorial)</td>
</tr>
<tr>
<td>3</td>
<td>Embedded Autonomy (lab course)</td>
</tr>
</tbody>
</table>

Course language
- English

Teaching Content
- Requirements on functional safety
- Providing and preserving trustworthiness in Autonomous Systems
- System Architectures and Platforms for Autonomous Systems
- Verification of Autonomous Systems

Literature

Competencies
With the successful participation in the module, students will gain basic knowledge in the platforms used in autonomous systems as well as very recent fields required to the design of safe autonomous systems considering functional and non-functional aspects (e.g., safety, reliability). During the practical exercises to the lecture the students will learn to implement simple autonomous systems tasks (Sensor fusion and AI computation which pose special demands on the architectures in order to implement the Perceive - Decide - Act loop) on embedded platforms. The students will be able to balance the performance limitations of the platform against the complexity of tasks and therefore find an optimal utilization of the resources.

Exams
Partial achievements:
1. Oral exam (30 minutes) or written exam (90 minutes) and
2. project work with written report *
3. Successful participation part 3

* The overall grade is formed from the arithmetic mean of the sub-grades of sub-performance 1 and 2.
The exact examination modalities will be announced by the 2nd event at the latest.

Forms of examination and performance
- Module Exam
- Partial achievements

37
<table>
<thead>
<tr>
<th></th>
<th>Participation requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>Module type and usability of the module</td>
</tr>
<tr>
<td></td>
<td>Elective Class in the Master’s degree program Sustainable Energy Systems.</td>
</tr>
<tr>
<td>9</td>
<td>Module Supervisor</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Selma Saidi</td>
</tr>
<tr>
<td></td>
<td>Faculty in charge</td>
</tr>
<tr>
<td></td>
<td>Faculty of Electrical Engineering and Information Technology</td>
</tr>
</tbody>
</table>
Modul 3-35: Online Problems

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at WS</td>
<td>1 Semester</td>
<td>3rd Semester</td>
<td>5</td>
<td>35 h</td>
<td>115h</td>
</tr>
</tbody>
</table>

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Online Problems (lecture)</td>
<td>08 0142</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Online Problems (tutorial)</td>
<td>08 0143</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Course language

English

3 Teaching content

1. Competitive Analysis
2. Randomized Algorithms
3. Deterministic Algorithms
4. Game-Theoretic Foundations
5. Request-Answer Games

Literature
Allan Borodin, Ran El-Yaniv, ONLINE COMPUTATION AND COMPETITIVE ANALYSIS. Cambridge University Press

4 Competencies

After successful completion, the students can recognise online problems and apply suitable procedures for their processing. They are able to evaluate solution methods with regard to their efficiency and complexity and to develop new solution methods for online problems on the basis of the methods they have learned.

5 Exams

Module Exam: oral exam (max. 40 minutes)

6 Forms of examination and performance

- [x] Module Exam
 - [] Partial achievements

7 Participation requirements

Recommended prerequisites: Good knowledge of fundamentals of discrete mathematics and fundamentals of algorithms.

8 Module type and usability of the module

Elective Class in the Master's degree program Sustainable Energy Systems.

9 Modul Supervisor

Prof. Dr.-Ing. Uwe Schwiegelshohn

Faculty in charge
Faculty of Electrical Engineering and Information Technology
Modul 2-25: Modeling and Control of Robotic Manipulators

ETIT-244

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at WS</td>
<td>1 Semester</td>
<td>3. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modeling and Control of Robotic Manipulators (lecture)</td>
<td>08 0125</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Modeling and Control of Robotic Manipulators (tutorial)</td>
<td>08 0126</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Course language

Englisch

3 Lehrinhalte

1. Spatial Representations
2. Direct Kinematics
3. Differential Kinematics
4. Dynamics
5. Actuators and Sensors
6. Motion Control
7. Interaction Control
8. Robotics System Toolbox and ROS

Literature

Siciliano, Sciavicco: Robotics: Modelling, Planning and Control (alternativ: Sciavicco, Siciliano: Modelling and Control of Robot Manipulators)

Siciliano, Khatib: Springer Handbook of Robotics

4 Competencies

This course provides the students with a profound background of modelling, planning and control of robotic manipulators.

The students acquire practical experience in robot kinematics, dynamics and motion control under ROS/Matlab.

5 Exams

Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes)*

* The exact examination modalities will be announced by the 2nd event at the latest.

6 Forms of examination and performance

- ✔ Module Exam
- □ Partial achievements

7 Participation requirements

Keine

8 Module type and usability of the module

Elective Class in the Master's degree program Sustainable Energy Systems.

9 Module Supervisor

apl. Prof. Dr. rer. nat. Frank Hoffmann

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Module Structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Automated Driving (lecture)</td>
<td>08 0215</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Automated Driving (tutorial)</td>
<td>08 0216</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

Course Language
- English

Lehrinhalte

1. Exteroceptive sensors (camera, radar, lidar, ultrasonic, sensor fusion)
2. Conidtional, highly, and fully automated driving:
 - Situation analysis and interaction-aware trajectory prediction
 - Trajectory planning and coupled prediction and planning
 - Control concepts to follow a planned trajectory
3. Machine learning in automated driving
4. Driver monitoring and hand-over models

Literature:
- D. Forsyth, J. Ponce (Ed.): Computer Vision: A Modern Approach (Prentice Hall)
- Selected papers on automated driving, robotics, and deep learning

Competencies

The students acquire a profound knowledge of automated driving systems. They are able to understand and solve tasks on perception, prediction, planning, control, and driver modelling with appropriate methods.

Exams

Module Exam: oral exam (max. 40 minutes) or written exam (max. 180 minutes)*

* The exact examination modalities will be announced by the 2nd event at the latest.

Prüfungsformen und -leistungen

- Module Exam

Participation Requirements

Recommended prerequisites: Basic knowledge of mechatronics, mechanics

Module Type and Usability of the Module

Elective Class in the Master's degree program Sustainable Energy Systems.

Module Supervisor

Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram

Faculty in charge
Faculty of Electrical Engineering and Information Technology
Module 3-45: Mobile and Pervasive Computing

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually in winter semester</td>
<td>1 Semester</td>
<td>3rd Semester</td>
<td>6</td>
<td>50 h</td>
<td>130 h</td>
</tr>
</tbody>
</table>

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mobile and Pervasive Computing Lecture</td>
<td>08 xxxx</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Mobile and Pervasive Computing Presentations</td>
<td>08 xxxx</td>
<td>Ü</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Course language

Englisch

3 Teaching content

As advanced sensing and communication technologies have been rapidly developed, mobile and pervasive computing technologies have been paid a lot of attention to enable intelligent services in our daily life. These services provide new insights into unstructured and uncertain information from a variety of data sources in sensor-rich environments and mobile devices. The lecture covers theoretical fundamentals in sensing and computing techniques, how to apply them in practical systems, and design principles in mobile and pervasive computing techniques. The content includes the following topics:

- Wireless perception and computing: active and passive wireless sensing techniques, wireless-based localization, wireless-based mobility analytics, wireless-based activity recognition, and applications based on wireless signals.
- Visual & acoustic perception and computing technologies: visual-based and acoustic-based localization, image registration, and mobility analytics based on visual and acoustic information.
- Mobile sensing and computing: mobile crowdsourcing in smart cities, privacy-preserving sensing techniques for mobile devices, multi-modal data fusion techniques based on smart devices.
- Edge computing and software-defined computing framework: computation task offloading techniques for low-latency and real-time services, service-oriented/user-centric dynamic computing flows among mobile devices, edge devices, and Cloud.

Literature

Books:

Research papers published in areas of mobile computing, pervasive computing, and communication networking e.g. IEEE Percom, IEEE trans. on Mobile Computing, IEEE ICC/WCNC/Globecom/VTC, and ACM/IEEE IPSN.

Slides of all lectures will be available online.

4 Competencies

The goal of the lecture is to establish knowledge of the fundamentals, advanced techniques of mobile and pervasive computing. After completing the lecture, students can independently design innovative pervasive computing systems on mobile and smart platforms, decompose dependency between computation modules and software required by applications, and optimize usage of sensing and computing resources in mobile computing systems.

5 Exams

*Module Exam: The final exam is an oral exam (30 minutes).

Study achievements: All students need to successfully pass 50% of assignments to be admitted to the final exam.*

*All dates will be published two weeks after the start of the lecture at the very latest.

6 Forms of examination and performance

☒ Module Exam ☐ Partial achievements
| 7 | **Participation requirements**
Recommendations (helpful but not mandatory): knowledge in foundations of algorithms and wireless communications. |
|---|---|
| 8 | **Module type and usability of the module**
Elective Class in the Master's degree program Sustainable Energy Systems. |
| 9 | **Module Supervisor**
Jun.-Prof. Dr.-Fang-Jing Wu
Faculty in charge
Faculty of Electrical Engineering and Information Technology |
3rd Semester
<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Aufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>12 weeks</td>
<td>3rd Semester</td>
<td>14</td>
<td>12 weeks</td>
</tr>
</tbody>
</table>

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>Typ</th>
<th>Credits</th>
<th>Time hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Industrial Internship</td>
<td>P</td>
<td>14</td>
<td>420</td>
</tr>
</tbody>
</table>

2 Course language

English

3 Teaching Content

The industrial internship takes place in the following areas:
- Research and development,
- Project planning, design, manufacture, assembly, testing and commissioning,
- Operation and maintenance,
- Marketing, sales, operational organisation, management and training

The Internship Office of the Department of Electrical Engineering and Information Technology advises each student on the selection of an internship company and the implementation of the internship. The advice and support includes, in particular, the curricular fit of the internship area offered by the internship company with the student's chosen major. The professional assessment and evaluation of the industrial internship is carried out for each student by a university lecturer of the faculty.

4 Competencies

After successful completion of the industrial internship, the students have an insight into the operational processes and organisation in industry as well as into the social structures of companies. Furthermore, they know typical engineering tasks in research and development and/or in production and operation. Finally, they have knowledge of practical procedures in industrial production and/or the use of modern technologies in electrical power engineering.

5 Exams

A report book must be prepared on the internship. The evaluation of success and performance is based on the submitted reports (submitted electronically as PDF) and the internship certificate of the company.

6 Forms of examination and performance

- Module Exam
- Partial achievements

7 Participation requirements

Recommended knowledge: Knowledge to perform engineering related activities

8 Module type and usability of the module

Industrial internship in the Master's degree programme "Sustainable Energy Systems"

9 Module Supervisor

Prof. Dr.-Ing. Christian Rehtanz

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>CP</th>
<th>Time hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab Course 1</td>
<td>P</td>
<td>3</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lab Course 2</td>
<td>P</td>
<td>3</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Course language

English

Lehrinhalte

The students complete 2 compulsory elective internships from the range of courses offered by the faculty. If internships with a total of 6 LP are available, only one internship is to be completed. The exact descriptions and information on the internships can be found in the following internship descriptions 1-18 or on the Internet.

Competencies

After successful completion of the course, students are able to discuss different perspectives on an engineering problem and explain their own views. and to explain their own views. The students are able to structure larger tasks during a group work phase and to derive meaningful work packages. Furthermore, the students understand the methodological approaches and procedures in the context of scientific work in engineering and can apply these to different problems.

Exams

The examination requirements are deposited in the respective internship descriptions.

Forms of examination and performance

- [] Module Exam
- ☒ Partial achievements

Participation requirements

The participation requirements are listed in the respective internship descriptions. The number of participants is limited. Admission to participation is in accordance with § 9 of the examination regulations.

Module type and usability of the module

- c

Module Supervisor

Dean of the Faculty of Electrical Engineering and Information Technology

Faculty in charge

Faculty of Electrical Engineering and Information Technology
LAB 1: Field theoretical simulation

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at WS</td>
<td>2 Weeks (Block event)</td>
<td>3rd Semester</td>
<td>3</td>
<td>60 h</td>
<td>30 h</td>
</tr>
</tbody>
</table>

1. **Module structure**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab</td>
<td>08 0023</td>
<td>P</td>
<td>90</td>
</tr>
</tbody>
</table>

2. **Course language**

 English

3. **Teaching Content**

 1. introduction to the functioning and procedure of numerical field calculation programmes.
 2. theory of the numerical methods of field calculation on which the programmes are based
 3. transferring electrical engineering problems into suitable calculation models
 4. utilisation of symmetry properties, special features of discretisation (calculation accuracy/duration), types of boundary conditions and degrees of freedom
 5. simulation and calculation of selected problems (two-dimensional, rotationally symmetrical) for time-dependent and independent fields, respectively.
 6. functional verification and comparison of numerical solutions with analytical calculation results (if possible)
 7. export of obtained simulation results for further numerical and graphical processing

Literature

Kost: Numerische Methoden in der Berechnung elektromagnetischer Felder

4. **Competencies**

 After successful completion of the practical course, the students have acquired basic knowledge about the possibilities and limitations of field calculation programs. They are able to transfer real field-theoretical problems into a calculable arrangement. They also have knowledge that enables them to reduce the computational effort to a necessary level through suitable measures and to assess the quality of a simulation result obtained in this way.

5. **Exams**

 Successful completion of 70% of the internship tasks

6. **Forms of examination and performance**

 - Module Exam
 - Partial achievements

7. **Participation requirements**

 Recommended prerequisites: Knowledge of the basics of Electrical Engineering, Basic Mathematical Knowledge of Numerical Calculation.

 The number of participants is limited. Admission to participation is in accordance with § 9 of the examination regulations.

8. **Module type and usability of the module**

 Elective Lab in the Master's degree program Sustainable Energy Systems.

9. **Module Supervisor**

 Prof. Dr.-Ing. Frank Jenau

 Faculty in charge

 Faculty of Electrical Engineering and Information Technology
LAB 2: Simulative performance evaluation of communication networks

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>CP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at WS</td>
<td>2 weeks</td>
<td>3rd Semester</td>
<td>3</td>
<td>48 h</td>
<td>42 h</td>
</tr>
</tbody>
</table>

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab</td>
<td>08 0138</td>
<td>P</td>
<td>90</td>
</tr>
</tbody>
</table>

2 Course language

English

3 Teaching Content

1. develop the required basics of OMNeT++
 a. Simulation setup
 b. Module and simulation definition/declaration
 c. Simulation of simple communication networks
2. modelling of system properties
 a. Modelling of communication protocols (ISO/OSI)
 b. Consideration of mobility aspects on OMNeT++
 c. Modelling and consideration of communication channel properties
 d. Implementation of complete system scenarios
3. evaluation and optimisation of complex communication systems
 a. Simulation of dynamic communication networks
 b. Tools for statistical analysis
 c. Validation of obtained results

Literature

Peterson, Davie: Computer Networks, 4th Edition;
Sinclair: Simulation of Computer Systems and Computer Networks

A Competencies

After successful completion of the practical course, the students have a sound knowledge of the performance evaluation and dimensioning of communication systems by means of event-driven simulation. In addition to the actual functions of the OMNeT++ simulation environment, this also includes the implementation and highly accurate simulative realisation of protocol-based processes in communication systems. The graduates of this practical course will be able to abstract even complex networking scenarios and map them realistically in the OMNeT++ simulation environment. Furthermore, the results obtained in this way can be processed accordingly and used for performance evaluation or optimisation based on aspects relevant to communication technology.

5 Exams

Successful completion of at least 80% of the tasks set.

6 Forms of examination and performance

☑ Module Exam ☒ Partial achievements

7 Participation requirements

The number of participants is limited. Admission to participation is in accordance with § 9 of the examination regulations.

8 Module type and usability of the module

Elective Lab in the Master's degree program Sustainable Energy Systems.

9 Module Supervisor

Prof. Dr.-Ing. Christian Wietfeld

Faculty in charge

Faculty of Electrical Engineering and Information Technology
LAB 3: Simulation and control of robot systems

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at WS</td>
<td>1 Semester</td>
<td>3rd Semester</td>
<td>3</td>
<td>48 h</td>
<td>42 h</td>
</tr>
</tbody>
</table>

1 Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab</td>
<td>08 0022</td>
<td>P</td>
<td>4</td>
</tr>
</tbody>
</table>

2 Course language

English

3 Teaching Content

1. basic competence: Matlab, Simulink, Robotic Toolbox, Virtual Reality
2. attempt: Modelling, kinematics and dynamics
3. experiment: path planning and control
4. experiment: image-based control

Literature

Bode: Systeme der Regelungstechnik mit MATLAB und Simulink;
Angermann, Beuschel, Rau, Wohlfarth: Matlab – Simulink – Stateflow: Grundlagen, Toolboxen, Beispiele;
Siciliano, Sciavicco, Villani, Oriolo: Robotics – Modelling, Planning and Control;

4 Competencies

After successful completion of the practical course, the students master the essential practical basics and methods for modelling and simulating robotic systems. The students are able to classify tasks in robotics and solve them independently; they have in-depth knowledge of the control and regulation of robotic manipulators through practical application.

5 Exams

The supervisor checks the completion of all subtasks and the protocol during the event.

6 Forms of examination and performance

- [] Module Exam
- [x] Partial achievements

7 Participation requirements

The number of participants is limited. Admission to participation is in accordance with § 9 of the examination regulations.

8 Module type and usability of the module

Elective Lab in the Master's degree program Sustainable Energy Systems.

9 Module Supervisor

Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram

Faculty in charge

Faculty of Electrical Engineering and Information Technology
LAB 4: Programming Reconfigurable Hardware

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annually at WS</td>
<td>1 Semester</td>
<td>3rd Semester</td>
<td>3</td>
<td>45 h</td>
<td>45 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab</td>
<td>080333</td>
<td>P</td>
<td>4</td>
</tr>
</tbody>
</table>

Course language
Englisch

Teaching Content
- Design of Hardware Circuit and Logics on FPGAs
- Usage of Design and EDA Tools
- Practical working with FPGA Platforms
- VHDL Programming

Literature

Competencies
By attending this course, students will learn how to work with current FPGA Architectures and Boards. The fundamentals in the usage of tools and programming VHDL will be shown. In multiple practical lessons, VHDL and Xilinx Vivado will be used to implement hardware designs for different tasks. The students will implement practical exercises on a Basys3 Development Board with an Artix 7 FPGA.

Exams
Successful completion of 70% of the internship tasks

Forms of examination and performance
- □ Module Exam
- ✗ Partial achievements

Participation requirements
Recommended prerequisite:
- Basic knowledge of computer architectures,
- Basic knowledge of VHDL programming

The number of participants is limited. Admission to participation is in accordance with § 9 of the examination regulations.

Module type and usability of the module
Elective Lab in the Master's degree program Sustainable Energy Systems.

Module Supervisor
Prof. Dr.-Ing. Selma Saidi

Faculty in charge
Faculty of Electrical Engineering and Information Technology
LAB 5: Control system operation for electrical power grids

Duration
- 1 Semester

Study section
- 3rd Semester

LP
- 3

Attendance rate
- 45 h

Self-study
- 45 h

Module structure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab</td>
<td>08XXXX</td>
<td>P</td>
<td>4</td>
</tr>
</tbody>
</table>

Course language
- English

Teaching Content

1. Introduction to the control centre operation of electrical transmission networks
2. Operation of a realistic control system
3. Carrying out network operation management for regular operating situations on the control centre simulator
4. Carrying out network operations for disturbed operating situations on the control centre simulator

Literature
- Kundur: Power System Stability and Control

Competencies

After successful completion of the practical course, the students have acquired basic knowledge of control system operation for electrical power grids. They are able to guide a power grid through various normal and disturbed operating situations on the control centre simulator. This creates a deep understanding of the real control system in practice.

Today's possibilities are taught during the practical course using a realistic control system with which the grid operation management personnel are also trained for practice and tried out using operating situations.

Exams

Completion of all subtasks and preparation of a protocol.

Forms of examination and performance

- Module Exam
- Partial achievements

Participation requirements

Recommended prerequisites: Knowledge of the basics of electrical power engineering, knowledge of information systems for grid operation management.

The number of participants is limited. Admission to participation is in accordance with § 9 of the examination regulations.

Module type and usability of the module

Elective Lab in the Master's degree program Sustainable Energy Systems.

Module Supervisor
- Dr.-Ing. Ulf Häger

Faculty in charge
- Faculty of Electrical Engineering and Information Technology
LAB 6: High Performance Computing in Python

Turnus
anually WiSe

Duration
2 weeks (block event)

Study section
1st semester

LP
3

Attendance rate
48 h

Self-study
42 h

1 **Module structure**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab</td>
<td>08 XXXX</td>
<td>P</td>
<td>90</td>
</tr>
</tbody>
</table>

2 **Course language**

English

3 **Lehrinhalte**

1. Concepts for evaluating the performance of implemented algorithms (Profiling)
2. Computational efficient algorithms and application of multiprocessing for speed improvement
3. Distributed programming for clusters or networked computers utilizing Pyro
4. Connection of existing system via the application of Numba, PyPy, f2py
5. NumPy for fast computations
6. Cython for speed improvements
7. Speeding up an existing loop using OpenMP by building modules for parallelization
8. Examplary implementation and evaluation of an algorithm for the design of quantum devices

Literature

Gorelick, Ozswald: High Performance Python

4 **Competencies**

Students gain practical knowledge of developing procedures for the implementation of high performance computing algorithms. They learn about the practical behavior and how the performance characteristics of high performance computing systems can be evaluated as well as what the limits of a hardware-oriented simulation are. Furthermore, students will have gained the essentials of the open-source software framework Python for the realization of high performance computing in engineering applications. They will be able to speed up algorithms for fast computation.

5 **Exams**

The Supervisor checks the completion and the reports of all subtasks during the course.

6 **Forms of examination and performance**

- ☐ Module Exam
- ☒ Partial achievements

7 **Participation requirements**

Basic knowledge in programming.

The number of participants is limited. Admission to participation is in accordance with § 9 of the examination regulations.

8 **Module type and usability of the module**

Elective Lab in the Master’s degree program Sustainable Energy Systems.

9 **Module Supervisor**

ap. Prof. Dr.-Ing. Dirk Schulz

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Seminar Scientific Work

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-yearly</td>
<td>1 Semester</td>
<td>3rd Semester</td>
<td>5</td>
<td>25 h</td>
<td>65 h</td>
</tr>
</tbody>
</table>

1 **Module structure**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course Scientific Work: Paper reading</td>
<td></td>
<td>S</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Seminar Scientific Work</td>
<td></td>
<td>S</td>
<td>2</td>
</tr>
</tbody>
</table>

2 **Course language**

Englisch

3 **Teaching content** part 1

1. research and selection
2. classification and elaboration
3. summary of contents

Teaching content Abschnitt 2

1. elaboration of the content of scientific papers
2. presentation of scientific work to an expert audience
3. discussion of scientific theses and results with an expert audience

The subject from which the scientific topic originates depends on the subject area of the upper seminar.

4 **Competencies**

Students can familiarise themselves with a scientific publication and are able to place the publication in the overall context of the respective field. They can present the content of the publication to an expert audience, answer questions about the content of this publication and discuss the conclusions from this publication with an expert audience. To this end, they are proficient in the presentation techniques customary in scientific lectures. In addition, they can participate in the discussion about the contents of a scientific lecture from their subject area.

5 **Exams**

The student’s final presentation is the Module Exam. In addition, the student must actively participate in at least five presentations by other students as coursework.

6 **Forms of examination and performance**

☑ Module Exam

☐ Partial achievements

7 **Participation requirements**

Recommended prerequisites: Good technical knowledge in the respective field of the upper seminar.

8 **Module type and usability of the module**

Elective Course in the Master’s degree program Sustainable Energy Systems.

9 **Module Supervisor**

Dean of the Faculty of Electrical Engineering and Information Technology

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Master Thesis

With the Master's thesis, 30 credit points must be successfully acquired.
<table>
<thead>
<tr>
<th>Turnus</th>
<th>Duration</th>
<th>Study section</th>
<th>LP</th>
<th>Attendance rate</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-yearly</td>
<td>1 Semester</td>
<td>4th Semester</td>
<td>30</td>
<td>-</td>
<td>900 h</td>
</tr>
</tbody>
</table>

1 **Module structure**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Course</th>
<th>LSF no.</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Master Thesis</td>
<td></td>
<td>P</td>
<td>-</td>
</tr>
</tbody>
</table>

2 **Course language**

English

3 **Teaching Content**

1. familiarisation with the scientific problem of the task using guidelines.
2. analysis of the relevant previous scientific work
3. development of solution approaches
4. verification and evaluation of the solution approaches
5. selection and realisation of the best approach
6. scientific description of the methodology and the solution in written form.

The contents and results of the Master’s thesis must be processed and presented to an expert audience. The presentation must take place no later than 6 weeks after submission of the thesis.

4 **Competencies**

The student is able to work independently on a narrowly defined technical-scientific problem from his or her subject area using scientific methods. He or she is able to evaluate relevant preliminary work from the specialist literature, develop new approaches to solutions, evaluate these and finally implement a solution. Furthermore, he or she is able to present the results in writing in a structured way so that the relevant aspects of the solution are understood. The student is also able to present the results to a specialist audience and discuss them at the end.

5 **Exams**

The Master’s thesis counts as a Module Exam.

6 **Forms of examination and performance**

- Module Exam
- Partial achievements

7 **Participation requirements**

Recommended prerequisites: Good scientific knowledge in the respective field of the master thesis
Required prerequisites: Acquisition of 80 credit points in the Master’s programme.

8 **Module type and usability of the module**

Elective Module in the Master’s degree program Sustainable Energy Systems.

9 **Module Supervisor**

Dean of the Faculty of Electrical Engineering and Information Technology

Faculty in charge

Faculty of Electrical Engineering and Information Technology
Version information

V 1.0: Vom Fakultätsrat der Fakultät für Elektrotechnik und Informationstechnik am 19.05.2010 beschlossene Version des Modulhandbuchs

Information on the elective modules

Two subject-related modules of 3 SWS each (usually corresponds to 5 LP) can be completed by a joint module examination. In this way, 10 credit points are acquired. There are a number of sensible combinations for this, which can be requested from the respective professors in individual cases.